

Macromodel and radiation pressure modeling with TP & Jason: Issues & Results

N.P. Zelensky (1,2), D. S. Chinn(1,2), D.E. Pavlis (1,2) F. G. Lemoine(1), (1) Planetary Geodynamics Lab., NASA GSFC (2) SGT Inc.

Residual signal evident in empirical accelerations for TOPEX

TOPEX SLR/DORIS orbit estimated 1/rev empirical along-track accelerations (cycles 1-446)

Residual signal at distinct frequencies

Periodogram TOPEX estimated 1/rev along-track acceleration (cycles 1-446)

In contrast to along-track, no evidence of linear trend in cross-track accels.

TOPEX SLR/DORIS orbit estimated 1/rev empirical cross-track accelerations (cycles 1-446)

Similar frequencies appear in crosstrack accels, but with less amplitude.

Periodogram TOPEX estimated 1/rev cross-track acceleration (cycles 1-446)

NTERNATIONAL DORIS SERVICE

Jason solar radiation pressure modeling is evaluated using the CNES 8-panel macromodel and the University College London (UCL) models

The UCL model is the more sophisticated, where the radiation flux is simulated using a pixel array, and the spacecraft structure is represented as a set of interlocking geometric primitives.

Preliminary tests with SLR/DORIS orbits show marginal improvement in the SLR RMS residuals using UCL

SLR residuals (cm) summary SLR/DORIS cycles 1-120							
test	mean	rms					
Macro- model	0.050	1.408					
UCL Version1	0.108	1.400					

CNES Macromodel is constructed using 8 flat plates, each representing an average area and reflectivity properties obtained from CNES pre-launch specs

(http://calval.jason.oceanobs.com/html/calval_plan/pod/modele_jason.html)

Jason visible									
surfaces	X+	Х-	Y+	Y-	Z+	Z-	SA+	SA-	
area (m)	1.65	1.65	3.0	3.0	3.1	3.1	9.8	9.8	
specular reflectivity	0.425	0.408	0.334	0.274	0.236	0.298	0.344	0.004	
diffuse reflectivity	0.178	0.186	0.342	0.369	0.382	0.336	0.006	0.298	

Jason CNES Macromodel improvement with tuning C_R

Jason estimated empirical along-track accelerations / day

Jason CNES Macromodel improvement with tuning C_R

Other Notes

- UCL Jason-1 Model #2 Available. Preliminary tests indicate is better than model #1 (Test in GEODYN & Gypsy?)
- UCL ENVISAT Model is available --Macromodel is too simplistic for this schoolbus-sized s/c. (Test in GEODYN & Gypsy?)
- 3. Are there alternate models for the SPOT satellites? Should we compare magnitude of accelerations from different centers? Should we try a macromodel tuning?

