IMPLEMENTATION OF DORIS DATA ANALYSIS INTO THE BERNESE GPS SOFTWARE

P. STEPANEK (1,2) U. HUGENTOBLER (3)

- 1. Geodetic Observatory Pecny, Research Institute of Geodesy, Topography and Cartography
- 2. Department of Advanced Geodesy, Faculty of Civil Engineering, Czech Technical University
- 3. Astronomical Institute, University of Bern

Doris data in Bernese software

Bernese GPS software – developed in AIUB

Input DORIS data: CDDIS 2.0 (2.1)

Transformation of Range rate to difference between two pseudoranges

 $\Delta R = -TV$

Original idea: Create ΔR for both frequencies using ionosphere correction to reconstruct 400 MHz observation

Problem: Ionosphere correction from CDDIS file includes also other Effekts

Solution: no solution at least for old satellites, use one frequency and apply the ionosphere correction

In the beginning are used all the corrections from CDDIS files

GPS – like approach

One DORIS observation is divided into two parts (two pseudoobservations):

Beginning: 100 km new ambiguity flag

End: 100 km + observation

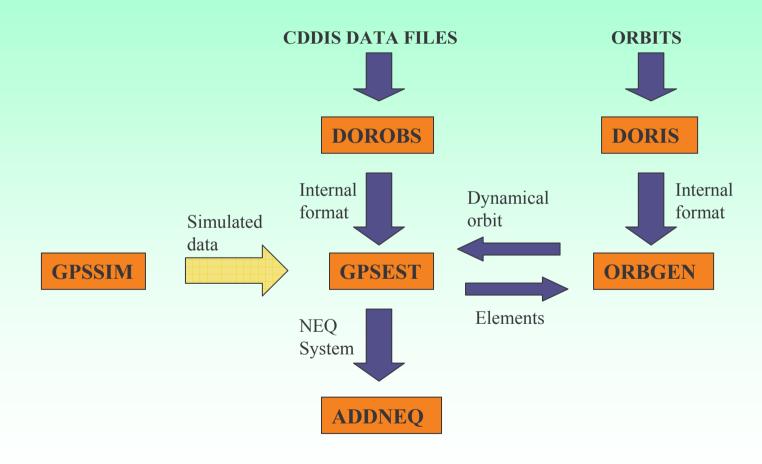
$$\Phi_1 = \rho(t_1) + A \equiv 0$$

$$\Phi_2 = \rho(t_2) + A$$

$$\Delta\Phi \equiv \Phi_2 - \Phi_1 = \rho(t_2) - \rho(t_1)$$

- •Constant 100 km is used to have always a positive value
- •Ambiguities A are eliminated before NEQ inversion
- •In principle is possible in the case of new receivers use phase –like processing

Beginning: 100 km new ambiguity flag


Next: 100 km + observation1

Next: 100 km + observation1 + observation2

• • •

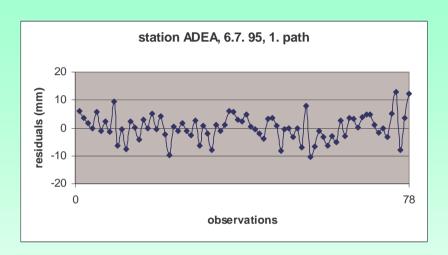
•••

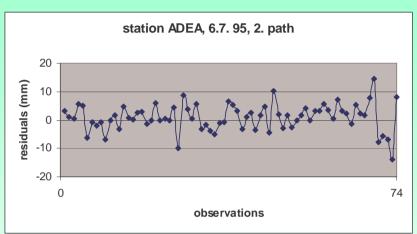
DORIS in Bernese software

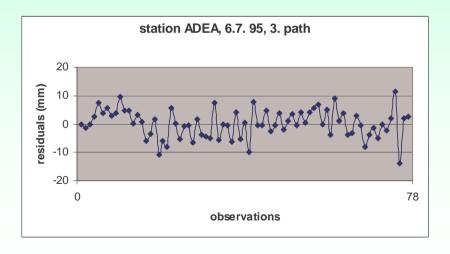
First testing campaign

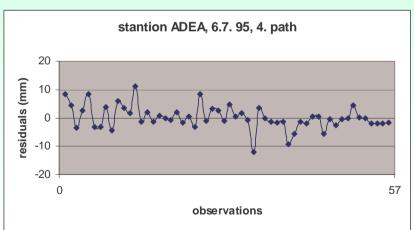
- TOPEX/POSEIDON data (format 2.0)
- July 1995
- station coordinates estimated, orbit fixed
- Orbit estimated, network fixed
- One day Arcs
- 4 weekly, 1 monthly solution
- all CDDIS correction applied
- troposphere estimation additional test

ORBIT FIXED, POSITIONNING

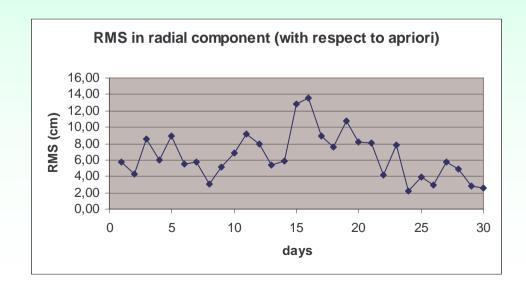

RMS in Monthly Positionning (cm)


	Formal	Determined from weekly solutions	Estimated – ITRF 2000 Helmert	Estimated – ITRF 2000
Longitude	1.2	3.0	9.9	10.6
Latitude	1.3	2.3	5.6	11.3
Height	1.5	2.5	4.2	8.0
3D	2.3	4.5	12.1	17.4


Helmert transformation of results (ITRF 2000)


Scale	0.0111 +- 0.0020 mm/km		
Tx	-3.0 +- 13.1 mm		
Ту	-26.3+- 13.0 mm		
Tz	12.8 +- 13.1mm		
Rx	0.00111 +- 0.00050 "		
Ry	- 0.00022 +- 0.00053 "		
Rz	- 0.00381 +- 0.00053 "		

RESIDUALS, STATION ADEA 6.7., ORBIT FIXED



<u>Orbit estimation – radial component</u>

- Apriori aviso orbit 2 cm radial precision
- STD orbit RMS with respect to apriori PRE (AVISO) -3 cm for 1 day arc, 1 cm for 8 hours arc
- Bernese estimatimation 7 cm RMS with respect to apriori STD orbit for 1 day arcs
- Estimated: initial Kepler elements, Solar pressure coefficients, Stochastic parameters (every 6 hours)

RMS of one observation

ANALYSIS	NETWORK	ORBIT	RMS0
			(mm)
Daily	Estimated	Fixed	5.6
Monthly	Estimated	Fixed	6.5
Daily	Fixed	Estimated	9.7

- The most of intervals were 10 s.
- High RMS in the case of orbit estimation low orbit model precision?
- Short arcs used for coordinates estimation very small improvement
- Troposphere estimation Formal RMS on the same level, result comparison to ITRF about 30% worse

Future plans

•Use the testing version of Bernese software in new Czech analysis centre at Geodesy observatory Pecny

• Include DORIS application in the official version of Bernese software