# CNES PROCESSING STRATEGY AT THE SERVICE D'ORBITOGRAPHIE DORIS (SOD)

June 13-14, 2002

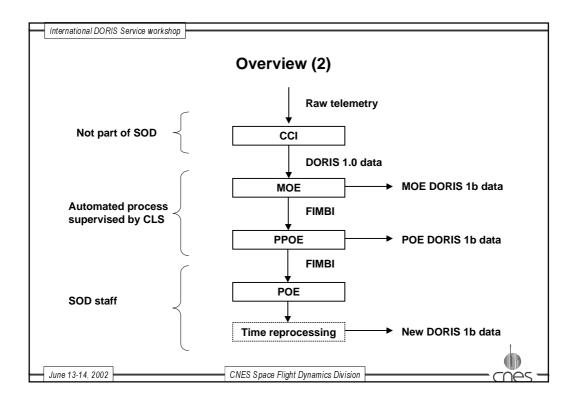
CNES Space Flight Dynamics Division



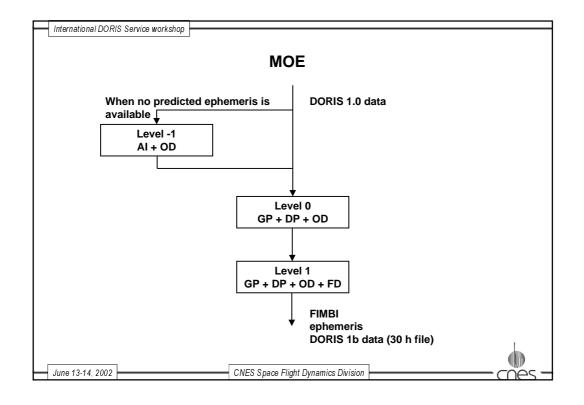
International DORIS Service workshop

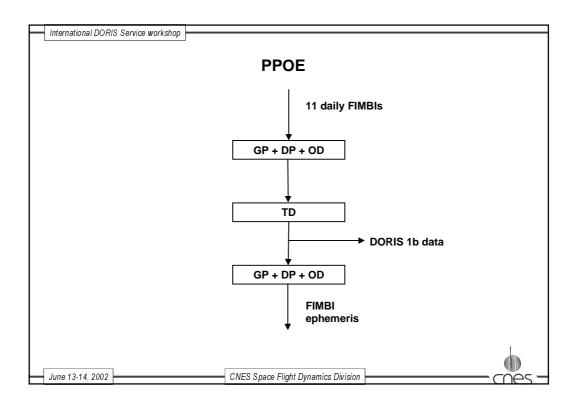
# SOD PROCESSING STRATEGY

- The Service d'Orbitographie DORIS
  - is not an institutional entity but part of the orbit determination department
  - is now working within the Altimetry and Orbit Determination ground system SSALTO
- Processing is operational
  - key function is to produce rapid and precise orbits for altimetry missions (TOPEX, Jason, ENVISAT)
  - processes are designed to operate automatically in any condition such as maneuvers and incidents
  - many steps have been added to increase robustness based on previous experience even though they would not be required on a day to day basis


June 13-14, 2002




International DORIS Service workshop Overview ■ Processing is a combination of elementary functions **Key functions are** "geometrical" preprocessing which edits data based on elevation angle, length and GP symmetry of pass, ... "dynamical" preprocessing which edits data based on residuals with respect to a DΡ "navigation" solution with slant range and timing biases adjusted orbit determination which computes orbits with various combinations of adjusted OD parameters time determination which estimates the relation between on-board time and TAI in TD the form of a polynomial auto initialization which estimates initial conditions directly from the DORIS data ΑI without any external information on-board frequency determination which estimates the on-board USO frequency FD offset in the form of a polynomial ■ Processing chain are mostly a succession of these functions


CNES Space Flight Dynamics Division

June 13-14, 2002



# CCI Decommutates telemetry to extract DORIS data Removes data flagged as bad by the receiver Compute the timetags of DORIS data using a predicted ephemeris model the time evolution as a polynomial linear per day or quadratic over 4 days Generates the DORIS 1.0 data products which contain nearly everything timetags are provided but not the timing polynomial timetags are rounded to the nearest microsecond





# POE and new data

- The POE is the result of an expert improvement of the PPOE
  - based on detailed analysis of residuals and empirical corrections
  - includes validation and intercomparison steps
  - revision of the delivery data following the POE step are exceptional
- An additional step to produce the new data
  - P. Willis legitimate request for coherent on-board time and frequency lead to the development of a modified datation function
  - this new function will replace the old one in the future
    - it interacts strongly with the whole processing chain (suppression of the frequency modeling step)
    - it can only be integrated after the commisioning phases for the new satellites
  - · this step requires manual intervention

coes -

June 13-14, 2002

# **DORIS 1b data**

- **Key concepts** 
  - · provide data Current CDDIS data (1.0):
  - replace dual
    - on-board frequency from frequency determination (polynomial) ionosphere c  $\hspace{-0.4em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\rule{0.8em}{0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}\hspace{-0.8em}$ 
      - t1, t2 times are TAI
  - compatible w
- deltaT = actual TAI count interval (truncated on file) Key equation

### Proposed revised format (2.0?):

- nominal frequencies **Key variations** 
  - t1, t2 times are on-board time
  - · origin of the - deltaT = exact rounded TAI count interval
  - nature of the Modified revised format (2.1?):
  - value of the - on-board frequency from timing polynomial
    - nominal beacon frequency
    - t1, t2 times are TAI (to check)
    - deltaT = exact rounded TAI count interval

June 13-14, 2002

CNES Space Flight Dynamics Division

International DORIS Service workshop

# **lonosphere correction**

- Derived directly from the dual frequency data
  - · correction computed for the 2 GHz carrier
  - · relation slightly more complex than for most dual frequency systems
    - differences in count interval for "old" receivers
    - large inter frequency bias (10-20 µs)
    - takes into account difference in center of phase location

$$I = \frac{V - \beta V'}{1 - \alpha^2 \beta} - c \frac{\delta f_{beacon}}{f_{beacon}} \frac{(\eta_2 - \eta_1) - \beta (\eta'_2 - \eta'_1)}{(1 - \alpha^2 \beta) \Delta T}$$

- in practice
  - the dependency upon the beacon frequency bias is negligible
  - the inter frequency bias does not play a major role
- . this correction is not exactly the one implemented now
  - the current formulation leads to results which are incorrect when the frequency bias is not estimated => cannot deliver passes which are completely eliminated

June 13-14, 2002

### Time determination

- This is the key difficulty
  - the network is not time synchronized as a whole, only two beacons offers time references
    - a model has to be used to propagate the timing information (fill the gaps)
    - only long term timing is accessible
  - the quality of the pseudo-range data is poor
    - precision around 300 m
    - only one frequency transmitted in telemetry
    - asynchronous from phase measurement
  - · reference beacons only provide long term stability
    - their short term behavior is similar to other beacons
    - their clock behavior is the superposition of short term variablity and long term stability
- ⇒ efforts to process orbit and time simultaneously have failed (until now)
  - ⇒ multi-step approach orbit -> time -> orbit -> time -> orbit !

\_ \_

June 13-14, 2002

- CNES Space Flight Dynamics Division

International DORIS Service workshop

# **Data format issues**

- Measurement principle has changed drastically between generations
  - difficult to find common ground between old and "miniaturized" receivers
    - old receivers: exact integer phase, uncertain time
    - miniaturized receivers: exact times, uncertainty on phase
  - the current format is one of the only good compromises
    - moving to a "rawer" format wil probably generate a schism
- The relation between on-board time and TAI is a key concern
  - it is computed relatively late (during POE processing)
  - it depends upon the arc over which it has been computed
    - thus it exhibits discontinuities and breaks in slope at arc boundaries

June 13-14, 2002

### The RINEX data format

- An old issue! But receiver independence is truly required now with all the generations of receivers in flight
- GPS-like Doppler version proposed two years ago
  - problem with timing information (but new solution proposed)
  - . looses editing and correction informations
  - not suited for new receivers (fields for opening and closing offsets are not needed)
  - limited interest from the users group which met at CNES
- New receivers are better suited for phase GPS-like format
  - · as long as continuous tracking remains in effect
  - · requires different files for phase and pseudo-range measurements
  - . no editing and correction informations
- Handling of meteo data is difficult
  - ideally reuse RINEX MET format with combination of all satellite for a given day
  - · difficult to produce and to use

June 13-14, 2002

CNES Space Flight Dynamics Division



International DORIS Service workshop

### Conclusion

- The difficulties in defining a data format reflect the inherent processing difficulties
  - the data are not self sufficient: a model has to be used to produce timing information
  - timing and orbit cannot easily be solved for in a single step
- The key defficiency of the current format has to do with how this timing/frequency issue is handled
  - it can only be solved if users perform their own timing solutions (adapted to their processing strategy)
  - are users ready to go through this added burden ?
- Adding the timing correction and pseudorange data on the side could be the solution
  - but will any one really process the added information?
- Everything else is details that can easily be fixed
  - · chronological sorting versus passes, day files versus cycles, etc.

June 13-14, 2002

