IDS WG Integrated Clock Correction Strategies for DORIS — Status and first results

Schreiner P1

1) GFZ Helmholtz Centre for Geosciences, Potsdam, Germany

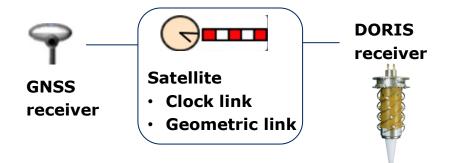
Athen – November 7, 2025

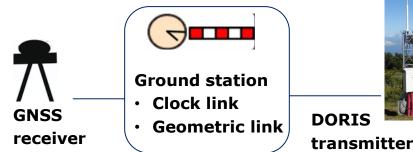
Content

- 1. Introduction
- 2. Results
 - 1. CLS / CNES / GET
 - 2. GFZ
 - 3. PosiTim
- 3. Objectives

1.1 Co-Location of DORIS Clocks

Clock Co-Location in Space


- DORIS and GNSS receiver are linked to the same USO
- E.g. Sentinel 3A, 3B, 6A (MF)


Clock Co-Location on Ground

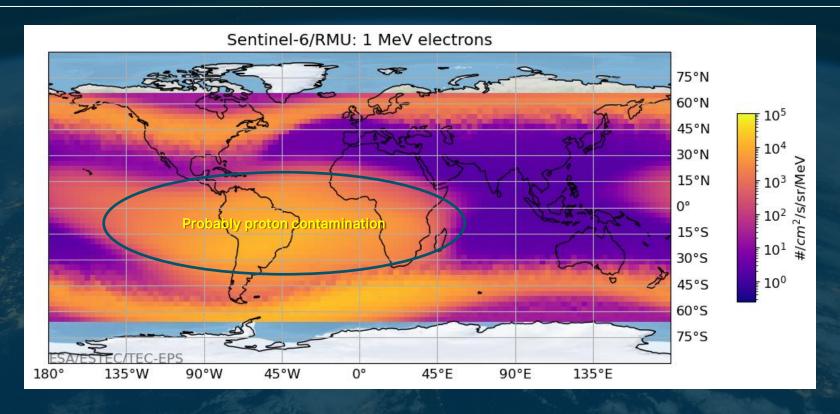
Ground clock co-location (REGINA project)

Map of the REGINA network (CNES, 2024)

1.2 General

Activities Overview:

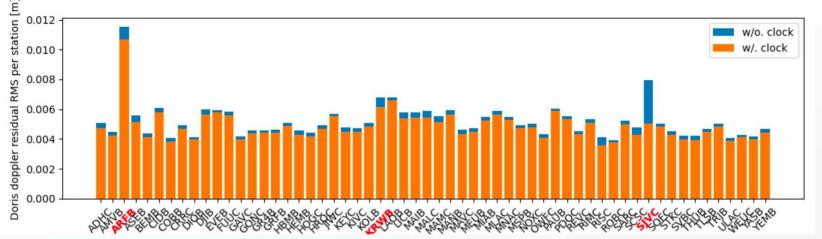
- CNES+CLS
 - Clock solution and internal applications
- GFZ
 - Applying external CLK solution
 - Working on own CLK product
- GMV
 - Integrated DORIS processing into FocusPOD
 - Providing clock product
- GOP+TUM
 - DFG project on DORIS clocks
 - Master s thesis on DORIS clocks in cooperation with DTU
- PosiTim
 - Applying external clock solution



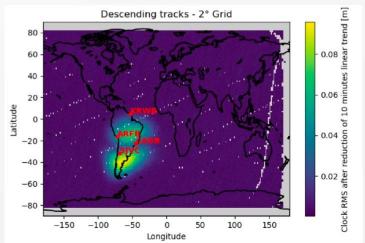
The Data for 2024 - 1 MeV electrons

1.3 Contributions

- Conference contributions
 - CNES/CLS presentation at IDS workshop 2024
 - CNES/CLS poster at EGU 2025
 - WG joint abstract submitted to REFAG 2026
- CPOD QWG meeting
 - Joint presentation on the use of clock products



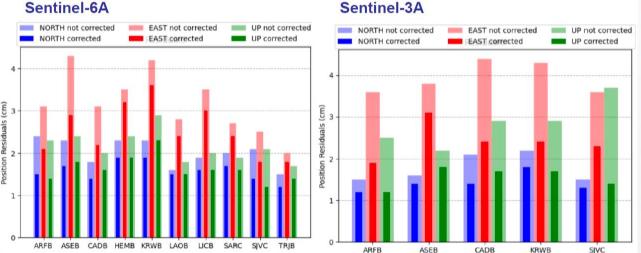
2.1 CNES / CLS


Results for 2024

Sentinel-3A

RMS w.r.t reference orbit						
	Radial	Tangential	Normal			
w/. Clocks	1.279 cm	3.601 cm	1.681 cm			
w/o. Clocks	1.293 cm	3.706 cm	2.060 cm			

Also improvement w.r.t. usual DORIS dynamic orbit


Station positions

CNES/CLS IDS Analysis Center study – EGU2025

Positioning Residual STD

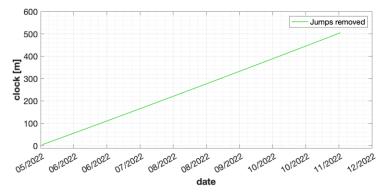
Time series of DORIS coordinates wo and w correcting the SAA stations.

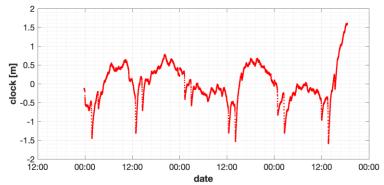
After removing the long-term trend, we compare the residual noise levels (STD) in NEU components.

[Capdeville, H., Mezerette, A., Gravalon, T., Lemoine, J.-M., Moyard, J., Mercier, F., and Couhert, A.: Analyzing the Impact of GPS Clock as the modelled DORIS USO on Station Position Estimation for Sentinel Satellites, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-11124, https://doi.org/10.5194/egusphere-egu25-11124, 2025.]

2021.0-2023.9 period

Improvement more important than on the orbits aspect!




2.2 GFZ

2.2.1 Clocks

- Raw clock from CNES/CLS
- 10 ms clock jumps are corrected
- Daily third degree polynomial fit is removed
 - The timestamp of DORIS RINEX is edited by this correction

2.2.2 Station RMS

Estimation of station coordinates:

 Differences between mean RMS of station coordinate correction to a priori (reference solution vs. solution with corrected clock)


10002: Grasse

12619 : Gavdos

14202: Wettzell

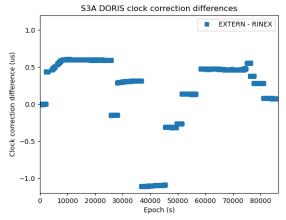
42204: Arequipa

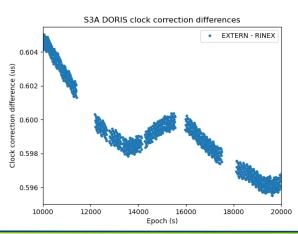
97305: Kourou

∆East

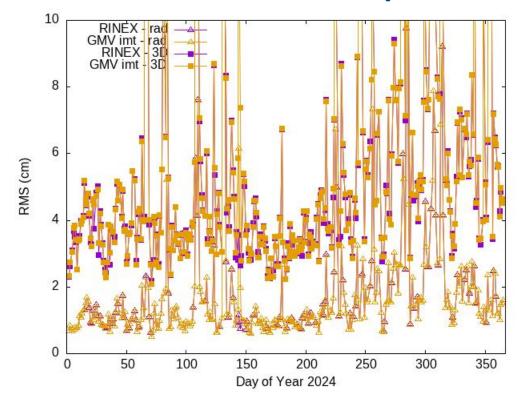
2.3 PosiTim

2.3.1 DORIS processing in NAPEOS


- Carrier phase observations from DORIS RINEX files are converted into Doppler observations, which are used in the orbit determination process (heritage from DORIS 2.2 observation files)
- The use of an external clock product impacts two things:
 - Receiver clock to get the exact measurement epochs
 - Frequency offset to get the proper frequency of the receiver
- Alignment of external clock corrections clk_{ext} $clk(t) = clk_{ext}(t) - clk_{ext}(t_{ref}) + clk_{RNX}(t_{ref})$ => is this correct?
- Calculation of the frequency offset based on clk_{ext}
 - Polynomial fit (4th order) to values of clk_{ext}
 - Frequency offset is first derivative of this polynomial



2.3.2 Clock corrections DORIS RINEX vs. external - S3A



2.3.3 S3A orbit comparisons to RSR combined orbit

- Sentinel-3A orbit comparison of DORISderived orbits to RSR#33 combined orbit
- RINEX => clock taken from entry in DORIS RINEX files
- GMV imt => clock taken from external clock file (GMV imt)
- ⇒ Similar performance of both orbit solutions
- ⇒ Several problem days with external clock file

2.3.4 Statistics of comparison to RSR combined orbit

Mean RMS (cm) of orbit comparison to RSR combined orbit – maneuver + clock problem days excluded

Solution	Radial	Along-track	Cross-track	3D
S-3A RINEX	1.35	3.60	2.00	4.42
S-3A GMV imt	1.36	3.62	2.02	4.45
S-3B RINEX	1.28	3.65	2.09	4.48
S-3B GMV imt	1.29	3.67	2.11	4.52
S-6A RINEX	0.80	2.54	2.61	3.82
S-6A imt	0.80	2.55	2.66	3.86

Similar performance of orbits generated with external clocks compared to RSR combined orbits

4 Objectives

- DORIS clock co-location
 - 1. Create test clock series for testing of processing
 - 2. Modify DORIS data processing tools
 - 3. Investigate various correction strategies (sampling, smoothing) and run testing campaigns
 - 4. Create a product to be used by IDS and end users
- Prepare a recommendation for routine production of the clock products and their archival at the IDS data centers as an official IDS product
- Prepare recommendations for future missions concerning DORIS-GNSS clock co-locations

